首页> 外文OA文献 >Parallelisation and application of AD3 as a method for solving large scale combinatorial auctions
【2h】

Parallelisation and application of AD3 as a method for solving large scale combinatorial auctions

机译:AD3的并行化和应用作为解决大规模组合拍卖的一种方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Auctions, and combinatorial auctions (CAs), have been successfully employed to solve coordination problems in a wide range of application domains. However, the scale of CAs that can be optimally solved is small because of the complexity of the winner determination problem (WDP), namely of finding the bids that maximise the auctioneer’s revenue. A way of approximating the solution of a WDP is to solve its linear programming relaxation. The recently proposed Alternate Direction Dual Decomposition algorithm (AD3) has been shown to ef- ficiently solve large-scale LP relaxations. Hence, in this paper we show how to encode the WDP so that it can be approximated by means of AD3. Moreover, we present PAR-AD3, the first parallel implementation of AD3. PAR-AD3 shows to be up to 12.4 times faster than CPLEX in a single-thread execution, and up to 23 times faster than parallel CPLEX in an 8-core architecture. Therefore PAR- AD3 becomes the algorithm of choice to solve large-scale WDP LP relaxations for hard instances. Furthermore, PAR-AD3 has potential when considering large- scale coordination problems that must be solved as optimisation problems.
机译:拍卖和组合拍卖(CA)已成功用于解决广泛应用领域中的协调问题。但是,由于优胜者确定问题(WDP)的复杂性,即找到使拍卖人的收入最大化的出价,可以最佳解决的CA规模很小。近似WDP解决方案的一种方法是解决其线性编程松弛问题。最近提出的交替方向双重分解算法(AD3)已被证明可以有效地解决大规模LP松弛问题。因此,在本文中,我们展示了如何对WDP进行编码,以便可以通过AD3对其进行近似。此外,我们介绍了PAR-AD3,这是AD3的第一个并行实现。在单线程执行中,PAR-AD3的速度比CPLEX快12.4倍,在8核体系结构中,PAR-AD3的速度比并行CPLEX快23倍。因此,PARAD3成为解决硬实例大规模WDP LP松弛的首选算法。此外,在考虑必须作为优化问题解决的大规模协调问题时,PAR-AD3具有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号